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The INDECO project 

The purpose of this Co-ordination Action is to ensure a coherent approach to the 

development of indicators at EU level, in support of environmental integration within 

the CFP and in the context of international work on indicators. The principal 

objectives of INDECO are: 

1. to identify quantitative indicators for the impact of fishing on the ecosystem 

state, functioning and dynamics, as well as indicators for socio-economic 

factors and for the effectiveness of different management measures; 

2. to assess the applicability of such indicators; and 

3. to develop operational models with a view to establishing the relationship 

between environmental conditions and fishing activities. 

A consortium of 20 research organisations from 11 EU Member States is 

implementing INDECO. An Advisory User Group will provide a link between the 

researchers and policy makers, managers and stakeholders. 

More information on INDECO can be found on the project’s website: 

http://www.ieep.org.uk/research/INDECO/INDECO_home.htm 
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1 INDICATORS FOR MANAGEMENT 

Fishing activity can potentially impact on all components of a marine ecosystem 

resulting in increased mortality of both target and by-catch species in a marine 

community and changes to fish growth and reproductive patterns (Hall 1999, Jennings 

& Kaiser 1998).  The removal of fish from a marine ecosystem also has significant 

effects on its predators, prey and competitors as well as indirect consequences for 

other species such as marine mammals and sea-birds.   

 

With the current interest in the development of a broader ecosystem-based approach 

amongst fisheries scientists and managers, there has been an acknowledgement of the 

need to extend beyond a consideration of the impact of fishing at the single species 

level (ICES 2000, Link et al. 2002, Garcia et al. 2003). This is reflected in European 

fisheries management legislation, with the Common Fisheries Policy (CFP) reform 

process leading to ‘the progressive implementation of an eco-system based approach 

to fisheries management’ being an objective of the new ‘basic’ CFP Regulation 

(Article 2(1), Regulation 2371/2002). While ecosystem-based management (EBFM) 

is yet to be defined in a EU policy context, it involves a move away from the “hard 

predictability” and quantitative predictions of the classical fisheries management 

model to the “soft predictability” and qualitative predictions of indicators (Degnbol & 

Jarre 2004, Degnbol 2005).   

 

Reliable Indicators of fishing impact should provide a means for assessing the relative 

effect of fishing on the marine ecosystem. However, the incorporation of fishing 

impact indicators into EBFM decision criteria is still in the developmental phase 

(Link et al. 2005).  In a management situation, indicators are evaluated in relation to 

specific reference values, either targets or limits, which, if violated, are designed to 

trigger a management response (Sainsbury & Sumaila 2001). The challenge is to 

identify key indicators with reference points that reflect the scale of the management 

unit, are case-specific, cost-effective and reflect the effects of fishing. 

 



 

 

2 INDICATORS FOR FISH COMMUNITIES 

 

Many indicators have been proposed for the measurement of fishing impact on marine 

ecosystems at organisational levels ranging from populations to whole ecosystems 

(see FAO 1999, Rice 2000, 2003, Rochet & Trenkel 2003).   The types of indictors 

that are available for use in an EBFM context and their associated requirements are 

described in a separate INDECO report “A review of the indictors for ecosystem 

structure and functioning” (2005).    

 

Single stock indicators and their associated reference points have been widely used in 

fisheries management to define overfishing for several decades (Degnbol & Jarre 

2004).  While single stock indicators are not considered to be indicators of ecosystem 

properties, it may be appropriate to consider a suite of species or population indicators 

from a single study as part of a “holistic” approach to the evaluation of the effects of 

fishing at an ecosystem level (Caddy 2002, Dale & Beyeler 2001).  However, the 

problems that have previously been encountered with single stock indicators also 

apply to ecosystem indicators, in particular the difficulty in distinguishing between 

anthropogenic effects (such as fishing) on indicators and other non- anthropogenic 

impacts (Trenkel & Rochet, 2003, Jennings & Blanchard 2004) such as environmental 

fluctuations which can also modify ecosystems over time (Walther et al. 2002).  

 

There have been several recent reviews of indicators for the detection of fishing 

impacts (Vandermeulen 1998, Hall 1999, Murawski 2000, Rice 2000, Rochet & 

Trenkel 2003) and relatively few of these indicators have been subjected to testing 

(Link et al.  2000, Trenkel & Rochet 2003, Rochet & Trenkel 2003, Nicholson & 

Jennings 2004, Fulton et al.  2005, Piet & Jennings 2005, Rochet& Rice 2005).  It is 

not the purpose of this review to provide an exhaustive analysis of the modelling of 

every indicator but rather to review those models that provide an objective evaluation 

of the behaviour of an indicator in response to the effects of fishing, with the intention 

of applying these results within a decision making framework for fisheries 

management.  Since many studies have used trend analysis for evaluating changes 



 

 

exhibited by indicators with time, therefore this review will focus on time-series 

models of indicator trends. 

2.1 Establishing a hypothesis for testing indicators 

Direct comparison of indicator values with reference points is only possible in the 

unlikely situation that the whole system is sampled.  More commonly, the system is 

sub-sampled and conclusions about the fish community as a whole are made within a 

hypothesis-testing framework which assumes a null hypothesis that the value of an 

indicator is equal to a specific reference point or exhibits no significant change.  In 

this instance the alternative hypotheses are that the value of the indicator is either 

greater or less than a specific reference point or else shows a trend over time as a 

result of the impact of fishing and/or environmental changes over time (Rochet & 

Trenkel 2003, Trenkel & Rochet 2003). It is necessary to exercise caution in the 

interpretation of indicator values with respect to reference points or target values as 

both empirical and model-derived indicators are estimated quantities and therefore 

subject to inherent error and uncertainty (Punt et al.  2001).  

2.2 Establishing a baseline as a reference point 

One criticism frequently levelled at ecosystem indicators is the lack of appropriate 

reference points (Degnbol & Jarre 2004).  Ideally, knowledge of the structure of the 

unexploited system is required in order to establish a baseline as a reference point 

which can then be compared to indicators which reflect subsequent levels of fishing 

impacts (Steele & Schumacher 2000, Jennings & Blanchard 2004, ICES 2001).  

However, fisheries exploitation usually starts long before the advent of any scientific 

programs designed to assess the impact of fishing on an ecosystem, making it difficult 

to establish reference points which reflect a system in a “pre-exploited” state.  

Furthermore, many existing community indicators of size are only sensitive to fishing 

impacts during the early phase of exploitation (Jennings & Kaiser 1998, Hall 1999).  

After the onset of exploitation, short-term indicator time series can be subject to 

“shifting baseline syndrome” (Pauly 1995) whereby indicators reflect a system which 

is subject to increasing levels of exploitation over time.   

 



 

 

The recent development by Jennings & Blanchard (2004) of a size-based model based 

on macroecological theory for predicting total fish abundance and size structure in an 

unexploited ecosystem may prove to be a powerful new tool for setting ecosystem 

indicator reference levels and assessing the effect of fishing on community structure.  

Another approach proposed by Link et al.  (2002) allows for the identification of 

reference limits through the use of principal components analysis (PCA) to track 

changes in system state. Both of these methods require further development and 

testing but show considerable promise. Presently, in nearly all situations, the status of 

the system in the absence of fishing remains unknown (Trenkel & Rochet, 2003). 

2.3 Reference Directions for Indicators 

The definition of appropriate reference points or limits is a major obstacle in the 

translation of indicators into decision criteria (Link 2005).  The majority of indicators 

that can be assessed with reference points operate at a single species level and 

therefore provide little insight into processes and operations at an ecosystem level 

(Hall & Mainprize 2004).  While there is little consensus on reference points, a range 

of studies have shown that the direction of trends in indicator time series can reflect 

the effect of fishing (Table 1).  Considering the difficulties in establishing baseline 

reference levels and the lack of agreed reference points for the majority of indicators, 

it would appear that the only viable alternative for assessing the relative impact of 

fishing is by the examination of consistent changes or trends in indicators over time 

(Rochet & Trenkel 2003).  Reference directions (RDs) may provide useful 

management targets as management response will be triggered by counter trends in 

RDs.  The use of RDs within a management framework is described by Link et al.  

(2002) and Bellail et al.  (2003).   

 

A review of recent studies shows that reference directions are commonly used for 

assessing indicators of size, diversity and trophodynamics (Table 1).  Therefore, these 

indicators will be of more immediate use to management than indicators without 

reference points.  The following section describes the derivation and use of indicators 

from size, diversity and trophodynamic models. 

 



 

 

2.4 Size-based models 

Fishing is a size-selective process which generally targets larger fish and exploitation 

results in an increase of smaller-sized organisms in an ecosystem (Jennings & Kaiser 

1998, Hall 1999, Jennings et al. 1999, Nicholson & Jennings 2004).  Individuals and 

species which generally occupy the top trophic levels in a fish community are usually 

the first to be targeted by exploitation (Ault et al. 1998, Gislason & Rice 1998, Pauly 

et al. 1998).  Given that mean body size is strongly correlated with trophic level in the 

community (Jennings et al. 2001), and exploitation decreases the biomass of large-

bodied fish, it is reasonable to expect that a size-based indicator will reflect the impact 

of fishing.  Shin et al. (2005) present a detailed analysis of the theoretical basis for the 

use of size-based indicators for the detection of fishing impacts.   

 

The collection of size data is a matter of routine for most surveys and commercial 

fisheries and the process of gathering together a time series of size-related information 

is usually simple and cost-effective.   This information can be combined in different 

ways to produce size-based indicators for processes at different hierarchical levels 

within an ecosystem. In addition, size indicators (e.g. independent estimates of mean 

community length and mean community weight) often demonstrate similar patterns of 

residual variance making them good candidates for MANCOVA analysis (see section 

4.5). 

 

2.4.1 Sized based indicators at the population level 

At the population level, changes in mean length, mean weight, mean maximum length 

and mean maximum weight all reflect the removal of larger fish (Trenkel & Rochet 

2003, Ault et al. 2005).  Mean population length has been shown to be unbiased with 

an assumption of constant recruitment to the exploited stock (Ehrhardt & Ault 1992, 

Quinn & Deriso 1999) and in some cases is also relatively insensitive to trends in 

recruitment (Ault et al. 2005).  Trenkel and Rochet (2003) found that this indicator 

was very precise and had a high level of statistical power.  Rochet (1998) found that 

population mean length-at-maturity of an exploited population increased with time, a 

finding consistent with the theoretical response of exploited stocks to density-



 

 

dependent changes in growth and maturation.  However, other studies have shown 

that the performance of this indicator is inconsistent (see Rochet 1998). 

 

2.4.2 Size based indicators at the community level  

Community indicators of mean size and weight provide a simple, robust and easily 

understood indicator of the impact of fishing on marine ecosystems (Link & Brodziak 

2002, Link et al. 2002, Rochet & Trenkel 2003, Dulvy et al. 2004, Laë et al. 2004, 

Nicholson & Jennings 2004, Sala et al. 2004, Blanchard et al. 2005, Piet & Jennings 

2005).  Blanchard et al. (2005) found that temporal trends in maximum length and 

average weight of fish communities respond to the effects of fishing in variable 

environments therefore these size-based indicators are useful for detecting fishing 

impacts against a background of climatic variation. Community mean length-at-

maturity is not considered to be any more informative than maximum community 

length (Shin et al. 2005). 

 

Mean community size ranks highly in terms of acceptability by stakeholders (Degnbol 

& Jarre 2004).  It is usually a relatively simple procedure to calculate the mean length 

of catch and provided that mean and median length are similar, a normal distribution 

can be assumed (Punt et al. 2001, Trenkel & Rochet 2003).  Link (2005) proposes an 

annual change in mean size < 30% as a precautionary threshold with a limit reference 

point of a 50% decline, although most studies use RDs to detect the impact of fishing. 

 

2.4.3 Fish size spectra models 

Fish size spectra is a measure of the distribution of biomass across size classes in a 

fish community. As fishing selectively removes larger individuals the predation 

pressure on smaller fish is indirectly reduced and the slope of the fish size spectrum 

increases (Murawski & Idoine 1992, Greenstreet & Hall 1996, Rice & Gislason 1996, 

Bianchi et al. 2000, Benoît & Rochet, 2003, Nicholson & Jennings 2004). Link (2005) 

proposes a limit reference point of a slope increase of 10% per year.   

Bianchi et al. (2000) found that the slope of the size spectra responded consistently to 

exploitation in high latitude regions while the decreased sensitivity of the slope to 



 

 

changes in fishing in tropical waters was attributed to the higher growth rate of 

tropical species.   In simulations, exploitation affected the curvature and stability of 

the size spectrum rather than the slope causing Benoît & Rochet (2004) to conclude 

that the slope of the size spectra is not a consistent indicator of fishing impacts.  The 

usefulness of size spectra models for management is limited as currently there is 

insufficient empirical and theoretical information available to allow meaningful 

interpretation of slopes and intercepts (Bianchi et al. 2000). 

2.5 Sources of potential bias in size-based indicators 

The samples from research surveys and commercial catches used to produce the data 

for estimating size-based indicators of fish communities are typically both size and 

species-selective.  Gear selectivity can result in the introduction of systematic bias in 

the size distribution of catches.  Inconsistencies in survey design, such as gradual 

changes to the sampling methodology over the duration of the research period, can 

cause interannual variability in the indicator which will confound the detection of 

temporal trends (Piet & Jennings 2005).  Consistent spatial coverage of the sampling 

area is essential when collecting size data (Shin et al. 2005). 

2.6 Performance of size-based indicators  

Nicholson & Jennings (2004) tested a range of size-based indicators and found that 

the power of a trawl survey to detect trends over 10 years or less was too low for the 

provision of effective provision of management advice.  Trenkel & Rochet (2003) 

tested many candidate indicators and found that the best performer over a short term 

in terms of precision and power was mean catch length. 

 

Trends in size-based indicators are not exclusively due to the effect of fishing.  

Environmental changes and fluctuations in recruitment will also influence trends 

(Jennings & Dulvy 2005, therefore researchers must attempt to account for as many 

sources of variation as possible by considering complementary information from size-

based and other indicators (Shin et al. 2005). 

 



 

 

2.7 Diversity indices -Species richness, Species diversity & Species evenness 

Fishing theoretically reduces diversity by selectively removing species (Jennings & 

Kaiser 1998, Gislason et al 2000) and over-long time periods various diversity indices 

have been shown to decrease in response to exploitation (Greenstreet & Hall 1996, 

Rijnsdorp et al. 1996, Greenstreet et al. 1999, Hall 1999).   However, in other 

situations, diversity indices have increased in response to increasing evenness 

following the removal of more abundant stocks (Rice 2000).  Other factors unrelated 

to the effect of fishing can also affect diversity indices leading to the conclusion that 

diversity indicators respond inconsistently to the effects of fishing. 

2.8 Mean Trophic Level (TLm) and Fishing in Balance (FiB) 

The mean trophic level (TLm) has been proposed as an indicator of the effect of 

fishing on food webs and the theoretical basis for the reference direction is undisputed 

(Pauly et al. 1998). Trends in the mean trophic level of catches are not exclusive to 

fishing impacts but are biased by economic and technological factors (Caddy et al. 

1998, Caddy & Garibaldi 2000).  Trends in the mean trophic level at the community 

level should theoretically provide a better indicator of fishing impacts (Rochet & 

Trenkel 2003).  The performance of this indicator in a range of studies was 

inconsistent.  For example, Jennings et al. (2002) found no consistent detectable trend 

in a long time series of the trophic level of the North Sea fish community whereas 

Milessi et al. (2005) accounted for economic and technological factors and found that 

mean trophic levels declined with increasing exploitation.   

 

The Fishing in Balance (FiB) indicator is a measure of “trophic level balance” which 

is similar to mean trophic level.  FiB incorporates measures of mean trophic level and 

assumes a known value for transfer efficiency which is constant across trophic levels 

(Pauly et al. 2000).  The FiB indicator is suitable for comparison between different 

ecosystems but is based on strong data assumptions and a complex modelling 

approach that includes a high level of uncertainty.  This indicator scored poorly 

among stakeholders (Degnbol & Jarre 2004). In addition, both TLm and FiB have 

high data requirements which restricts their application (Rochet & Trenkel 2003). 

 



 

 

2.9 Mass Balance Models: Ecopath & Ecosim 

Mass balance models are a well established group of ecosystem models (Rice 2000).  

The Ecopath suite of software (Walters et al. 1997, Christensen & Walters 2000, 

Pauly et al. 2000) provides an aggregate system-modelling package for the evaluation 

of the impact of fishing on the trophic flow in ecosystems.  The Ecopath approach 

was first developed in the 1980s (Polovina & Own 1983, Polovina 1984,1985) and 

expanded by various researchers to include temporal and spatial ecological analysis 

(Walters et al. 1997, 1999, 2000) and policy optimisations (Walters et al. 2002).  The 

Ecopath with Ecosim (EwE) software package produces indicators such as the level of 

primary production required to support the fishery, mean trophic level and the transfer 

efficiency between trophic levels that can be used to assess the ecosystem effects of 

fishing (Bundy 2001, Buchary et al. 2003, Christensen & Walters 2003, Rice 2003).  

In some cases, these trophic macrodescriptors have been shown to be more sensitive 

and therefore better indicators of fishing impacts than structural descriptors such as 

total fish biomass or diversity indices (Arias-Gonzalez et al. 2004). 

 

As with all multi-species models, the application of EwE is limited by the quality and 

quantity of the available data (Aydin 2004).  Plagányi & Butterworth (2004) advise 

that EwE provides a valuable complement to traditional single-species models but in 

its current form EwE does not adequately address uncertainties in either the data or 

model structure therefore it should be used with caution.  These authors also advise 

caution when applying EwE to assess marine mammals and seabirds. The EwE model 

was specifically developed for teleost fish therefore applications that include marine 

mammals, seabirds and some shark species need to account for the different life 

history parameters of these species.  The EwE model was used by Blanchard et al. 

(2002) to model marine mammal and fishery interactions in the Barents Sea who 

found the model was extremely sensitive to the vulnerability parameter, a common 

aspect of many EwE studies and widely recognised (Christensen & Walters 2004).  

The role of external forcing cannot be readily accommodated by mass balance models 

making it difficult to ascertain to what degree an indicator is responding to the impact 

of fishing in the presence of environmental fluctuations (Rice 2000) 

 



 

 

3 INDICATOR TRENDS FOR OTHER POPULATIONS 

3.1 Seabirds 

Trends in population abundance, productivity, survival and other responses of even 

the most common seabird species may be useful indicators of stability and health in 

marine ecosystems (Cairns 1987, Batty 1989, Aebischer et al. 1990, Ainley 1994, Le 

Corre & Jaquemet 2005).  The high variability in seabird populations generally makes 

it difficult to detect the effect of fishing on abundance (Anderson & Gress 1980, 

Diamond & Devlin 2003).  However, in a study of Alaskan seabird populations Hatch 

(2003) showed that a relatively short time series of  5 years of survey data could 

detect declines of 20% per year with 90% power. 

3.2 Marine mammals 

The estimation of trends in population abundance is a standard method for monitoring 

the impact of fishing on marine mammal populations. However, abundance is an 

unreliable indicator of fishing effects. The detection of changes in long-lived slow-

growing species, such as seals, can be especially difficult as long time series are 

required to detect trends. Forcada (2000) found that a population survey of 

endangered monk seals had insufficiently low power to detect changes in abundance 

over a time period shorter than 8 years. 

3.3 Benthos 

Fishing can cause physical damage to the benthos resulting in habitat modification 

(Auster et al. 1996), changes to the sedimentation pattern (Churchill 1989), nutrient 

cycling (Mayer et al. 1991) and the attraction of predators and scavengers to exposed 

and damaged organisms (Kaiser & Spencer 1994).   Fishing impacts can be monitored 

by trends in indicator species and rates of recovery of benthic communities following 

disturbance by fishing (Collie et al. 2000, Ellis et al. 2000, Kaiser 2003).   

 

 



 

 

Table 1 The number of recently published studies that analysed the indicators listed for time series trends. 

Indicator 

Reference 

Direction 

(RD) 

Number of studies 

which reported that the 

indicator time series 

DID reflect the RD 

Number of studies which 

reported that the 

indicator time series DID 

NOT reflect the RD 

Number of 

studies with 

inconclusive 

results 

Study 

Mean length in catch ↓ 2   Trenkel & Rochet (2003); Laë et al. (2004)  

Mean length in population ↓ 2   Trenkel & Rochet (2003); Ault et al. (2005) 

Mean length in community ↓ 3 1  

Trenkel & Rochet (2003); Dulvy et al. (2004); Laë et al. (2004);  

Nicholson & Jennings (2004) 

 

Mean length of individual species ↓ 1   Laë et al. (2004) 

Mean maximum length in 

community 
↓ 4   

Jennings et al. (1999); Nicholson & Jennings (2004);  

Blanchard et al. (2005); Piet & Jennings (2005) 

Mean maximum length in catch ↓ 1   Laë et al. (2004) 

Mean weight in community ↓ 6 1  
Jennings et al. (2002); Trenkel & Rochet (2003); Nicholson & Jennings 

(2004); Blanchard et al. (2005): Jennings & Dulvy (2005); Mueter & 

Megrey (2005); Piet & Jennings (2005) 

Mean maximum weight in 

community 
↓ 2   Jennings et al. (2002); Nicholson & Jennings (2004) 

Mean age at maturity community ↓ 1   Jennings et al. (1999) 

Mean length at maturity 

community 
↑ 1   Jennings et al. (1999) 



 

 

Indicator 

Reference 

Direction 

(RD) 

Number of studies 

which reported that the 

indicator time series 

DID reflect the RD 

Number of studies which 

reported that the 

indicator time series DID 

NOT reflect the RD 

Number of 

studies with 

inconclusive 

results 

Study 

Mean length at maturity 

population 
↑ 1   Rochet (1998) 

Slope/intercept of size spectra ↑↓ 10 3  

Gislason & Rice (1998); Bianchi et al. (2000); Jennings et al. (2002); 

Benoît & Rochet (2003,2004); Trenkel & Rochet (2003); Nicholson & 

Jennings (2004); Blanchard et al. (2005); Jennings & Blanchard (2005); 

Jennings& Dulvy (2005); Stobberup et al. (2005); Piet & Jennings 

(2005);  

 

      

Species richness ↓ 1 2  Bianchi et al. (2000); Amand et al. (2004); Laë et al. (2004) 

Species diversity ↓ 1 2 1 
Greenstreet & Hall (1996); Thrush et al. (1998); Bianchi et al. (2000);  

Laë et al. (2004) 

Species evenness ↑  1  Laë et al. (2004) 

      

Mean trophic level ↓ 3 2 1 
Jennings et al. (2002); Nicholson & Jennings (2004); Cury et al. (2005); 

Gascuel et al. (2005); Milessi et al. (2005); Piet & Jennings (2005) 

Ecopath/Ecosim ↑↓ 2  4 

Christensen (1998); Shannon et al. (2000); Steven et al. (2000);  

Shannon & Cury (2003); Moloney et al. (2005); Pinnegar & Polunin 

(2004) 

Fishing in Balance (FIB)  2   Cury et al. (2005); Milessi et al. (2005) 



 

 

 



 

 

4 MODELLING TRENDS IN INDICATORS 

4.1 Trend Analysis  

When reference points, targets or limits are either unavailable or difficult to 

determine, reference directions such as the trends exhibited by an indicator over time 

can be used to examine the effect of fishing on ecosystems. 

 

The analysis of temporal trends in indicators has been included in many studies (e.g. 

Pauly 1998, Philippart 1998, Jennings et al. 1999, Jennings et al. 2002, Link et al. 

2002, Hall & Mainprize 2004, Blanchard et al. 2005) but few have considered an 

analysis of statistical power (Hayes & Steidl 1987, Peterman 1990).  Statistical power 

analysis has been used in studies of time series trends using indicators such as catch-

per-unit-effort (de la Mare 1984, Mueter & Megrey 2005), fish abundance (Peterman 

& Bradford 1987, Jennings et al. 1999, Ham & Pearsons 2000, Maxwell & Jennings 

2005), fish size (Nicholson & Jennings 2004, Jennings & Dulvy 2005), marine 

mammal abundance (Gerrodette 1987, Holt et al. 1987, Forcada 2000, Forney 2000, 

Thompson et al. 2000), seabird abundance (Hatch 2003) and benthic condition 

(Jackson et al. 2000).  For the purpose of this review, statistical power is the 

probability that a certain size of effect (e.g. the impact of fishing or slope in a linear 

time trend in an indicator) will be detected in a statistical hypothesis test if the effect 

actually exists.   

 

Obviously, indicator studies that are designed with low power will not be able to 

provide appropriate information for management purposes.  Low power studies run 

the risk of being unable to detect statistically significant effects or trends even when 

these effects are actually substantial.  If the power of a monitoring program is low 

then researchers may continue to monitor indicator trends, oblivious to the fact that 

any real changes in indicator status will remain undetected.   Peterman (1990) goes as 

far as to state that low power tests are worse than no tests at all.  

 



 

 

4.2 The concept of statistical power 

Studies of indicator trends are generally concerned with the direction and magnitude 

of the trend.  The null hypothesis HO is usually expressed as “there is no effect of 

fishing on an indicator trend” with an alternative hypothesis HA of the form “the 

indicator trend is significantly affected by fishing”.  Formal statistical tests are 

structured to decide whether or not to reject HO and it is necessary to emphasize that 

the null hypothesis can never be proved rather it can only be disproved at a given 

level of significance (Popper 1962).  There are four possible outcomes of statistical 

hypothesis tests and two types of errors (Table 2).   A Type I error is made when a 

decision is made to reject a null hypothesis that is actually true.  A Type II error is 

made when a decision is made to accept a null hypothesis that is actually false.  The 

rate of acceptance of Type I errors (α) is conventionally set at 0.05 for most 

ecological studies.  However, α has been set at values higher than 0.05, e.g., at 0.10, 

in environmental studies where the costs of a Type II error have been understood to 

be very high.  Most studies involving hypothesis testing report an α level for the 

rejection of HO but very few apply the concept of statistical power and extend the 

analysis to the determination of 1- β  where β is the probability of a type II error, i.e., 

failing to reject HO when HO is actually false (Table 2).  The power of a test is its 

ability to avoid Type II errors and is defined as the probability of correctly rejecting a 

null hypothesis that is false (Peterman 1990).  

Table 2 The four possible outcomes for the statistical test of a null hypotheses given 

the actual state of nature.  Probabilities of each outcome are shown in parentheses 

(adapted from Peterman 1990). 

Decision 
Actuality 

Do not reject HO Reject HO 

HO  is true Correct (1-α) Type I error (α) 

HO is false Type II error (β) Correct (1- β) = Power 

 

It is important to recognise that a failure to reject HO is not equivalent to a conclusion 

that  HO is true. An analysis which does not reject HO can only lead to a conclusion 

that HO is true when the probability of a type II error (β) is sufficiently low. The term 



 

 

“sufficiently low” is generally assumed to refer to a β-value at least <0.2 which gives 

a power >0.8 (Peterman 1990). [Note that power analysis applies only to those 

situations where testing results in a failure to reject HO.  If testing indicates a rejection 

of HO at a given level of α then the calculation of power is not warranted]. Type II 

errors are common in cases where large sampling variability or small sampling size 

prevent the detection of real effects that lead to the failure to reject HO when HO is 

actually false. 

 

Nearly 15 years after Peterman (1990) reported that the majority of studies in fisheries 

aquatic sciences failed to consider the statistical power of hypothesis tests when null 

results were obtained, the importance of reporting statistical power is still largely 

ignored.  This review surveyed 36 studies which analysed indicator trends for fishing 

impacts.  Of those that did not reject a null hypothesis, only 17% reported the 

statistical power of the test and yet 93% of the studies with failed rejections of null 

hypotheses and either low power or no power calculated formulated conclusions and 

management recommendations on the basis that HO was true. 

 

Peterman (1990) identified four interrelated factors which affect statistical power. 

1. The probability of a type I error (α) and the level of the P-value below which 

HO is rejected. Power and α are directly related, thus an increase in α from the 

conventional 0.05 to 0.10  results in a substantial increase in statistical power 

and may be considered when the costs of type II errors are large relative to the 

cost of type I errors (Peterman 1990).   

2. The size of the true effect being tested.  The greater the hypothesized effect 

size, the higher the power and the higher the probability of obtaining a 

statistically significant outcome (Ortiz 2002).  

3. The sample size (N).  Power can always be improved by increasing the sample 

size (Cohen 1988) 

4. The sample variance (s2).  Increasing precision of measurement  and 

decreasing variability in the sampled parameter will increase power. 



 

 

4.3 A Priori Analysis 

A priori power analysis is ideally suited for determining whether a proposed 

monitoring scheme is likely to detect postulated effects (Steidl et al. 1997).  A priori 

analysis conducted before the start of an experiment or management program can be 

used to  

1. To calculate the sample size required to produce a desired level of power for 

an assumed effect size or, 

2. To calculate the detectable effect size necessary to produce a given level of 

power.   

Monte Carlo simulation can also be used to explore how a wide range of assumptions 

regarding the sample size, expected effect size and sampling variability can affect 

statistical power (De la Mare 1984, Scandol & Forrest 2001). 

4.4 A Posteriori Analysis 

When statistical testing fails to reject the null hypothesis, a posteriori analysis is 

useful for estimating the effect size or sample size that would have been necessary for 

a study to achieve an acceptable level of power.  The majority of studies of indicator 

time series that incorporate a posteriori analyses of power have concluded that 

statistical power was insufficient to detect declines in indicator trends within a 

realistic management time frame (De la Mare 1984, Nicholson & Fryer 1992, Fryer & 

Nicholson 1993, Ham & Pearsons 2000, Punt et al. 2001, Hatch 2003, Maxwell & 

Jennings 2005, Piet & Jennings 2005).  

 

Few resources are available for dedicated studies of indicator trends and most 

researchers use data from international research surveys instead (Maxwell & Jennings 

2005).  In general, these large-scale surveys do not include the design requirements of 

indicator trend studies as a major priority thus the power of many indicator studies to 

date has been low.  It is essential that researchers include a retrospective analysis of 

power of indicator trends before making recommendations to management (Peterman 

1990). 

 



 

 

Retrospective power analysis of an indicator time series is a relatively straightforward 

procedure.  A comprehensive review of statistical analysis software is provided by 

Thomas & Krebs (1997).  The first step is to fit a model (e.g. linear, quadratic, 

exponential) to the time series data that best explains the systematic variation in 

indicator annual mean values.  One procedure would be to fit a lower-order 

polynomial or robustly locally weighted smoothed curve (see Fryer & Nicholson 

1993).  An examination of the residuals will assist in deciding the model that provides 

the best description of the data.  There are various methods for describing the variance 

structure of the model.  For a standard linear model the residual variance is equal to 

the variance of the deviations between dependent observations and the linear model 

(adjusted for two estimated parameters), given that the model is correct (Trenkel & 

Rochet 2003). 

   

Power can be increased by increasing the number of samples per year or by extending 

the length of the indicator time series.  Obviously it is unreasonable to expect the 

detection of a trend in an indicator series over a short time period (e.g. < 3 years) 

however it is equally unrealistic to extend a time series to 20 or even 30 years in order 

to achieve a desired level of power.   An alternative approach to increasing the power 

of an indicator trend study is to use MANCOVA (Multivariate Analysis of 

Covariance) which is available through software packages such as S-Plus and SAS.  

Many types of indicators (e.g. mean length and mean weight) are based on similar 

community characteristics and thus exhibit high levels of correlation.  MANCOVA 

provides a simple and inexpensive way of improving power simply by combined 

analysis of the covariance of a set of indicators which are not necessarily independent 

(e.g., all obtained from the same survey) and can be expected to exhibit similar trends.  

For example, the annual mean weight of a set of fish species captured in a survey 

could be expected to be positively correlated with, and is not independent of, the 

annual mean length of the same set of fish species in the same survey.  MANOVA 

and MANCOVA are specially formulated to analyse the variance and covariance of 

sets of inter-related dependent variables.  So instead of this being a univariate analysis 

of variance where there is one dependent variable, there is more than one dependent 

variable and these are related to a set of factors or covariates that might help to 

explain the variation in the dependent variables.  It is of benefit to evaluate the set of 



 

 

inter-related dependent variables in a single statistical analysis rather than one 

statistical analysis per dependent variable because the structure of the error variance is 

more accurately estimated and taken into account in a MANOVA and MANCOVA 

when there is covariance among dependent variables in the error deviations from 

model predictions. 

4.5 Consequences of Type I and Type II errors 

By selecting a value for α, the researcher is also making an (often unrecognized) 

assumption regarding the relative importance of Type I and Type II errors.  If  α is 

decreased then β will increase with the result  that power may be  reduced to an 

unacceptably low level.  A more conservative management approach would result 

from increasing α (e.g. from the conventional 0.05 to 0.10) (Peterman & M’Gonigle 

1992).  The concept behind this approach is to allow quicker implementation of a 

management response in the event that adverse trends are identified (Hatch 2003).  

The costs associated with Type II errors in environmental studies are typically very 

high (Peterman 1990) and the risks and consequences of Type II errors may far 

outweigh those associated with Type I errors (Toft & Shea 1983).  

4.6 Reversing the burden of proof 

In hypothesis testing of indicator trends, the burden of proof is typically to 

demonstrate that fishing is having an effect by rejection of a null hypothesis of no 

effect of fishing.  Inherent in this approach is the willingness to accept the 

consequences of Type II errors over those of Type I errors (Steidl et al. 1997).  

Instead, it may be appropriate to shift the burden of proof and require proof that 

fishing is not having an effect by a failure to reject the null hypothesis that fishing is 

not having an adverse effect with acceptably high power (Peterman 1990, Mangel 

1993, Taylor et al. 2000, Sanderson & Petersen 2001, Hatch 2003).  Previous studies 

have shown that the concept of reversing the burden of proof is justified in the case of 

environmental management due to the overwhelming costs of Type II errors and a 

track record that shows that a history of failure to reject a null hypothesis of no effect 

of fishing has ultimately led to the collapse of many pelagic stocks (Saetersdal 1980).  

A reversal of the burden of proof is a shift towards a more precautionary management 

strategy (Peterman & M’Gonigle 1992). 

 



 

 

The reversal of the burden of proof is a major departure from current practice but is a 

standard method for testing pesticides, food and drugs (Peterman 1990).  Another 

precautionary approach is to set the null hypothesis equal to some detectable effect 

size (which may be a target or reference value e.g. HO=2) rather than to set a null 

hypothesis of no effect (e.g. HO=0).  This would result in the rejection of the null 

hypothesis only in the event that the direction of the indicator trend was towards an 

absence of adverse effects of fishing. 

4.7 Reducing model uncertainty 

Trends in abundance indices, catch-per-unit-effort, size-related indicators and 

diversity indicators have all been used to detect the impact of fishing.  However the 

detection and interpretation of these trends is often confounded by environmental 

variability.  This variability causes a decrease in statistical power and introduces 

uncertainty as to whether the observed trends are due to true changes in the indicator 

or to environmental fluctuations. 

 

One possible approach to account for environmental variability is to model abundance 

as a function of a suite of environmental variables using generalised additive models 

(GAMs) (Hastie & Tibshirani 1990) or generalised linear models (GLMs) 

(McCullagh & Nelder 1989).  GAMs and GLMs share many common statistical 

properties and both can use linear, logarithmic or polynomial models to describe 

relationships between predictor and response variables.  However, unlike GLMs, 

GAMs can also include non-linear relationships to describe patterns in the data and 

therefore they are of particular interest to researchers in ecology (Cury et al. 1995, 

Swartzman 1995).  Statistical optimisation criteria such as maximum likelihood or 

model choice criteria such as Akaike’s information criterion (AIC) are useful tools in 

the determination of the appropriate number of effects for inclusion in the model. 

 

While it is unlikely that GAMs and GLMs will capture the complexities of all  

environmental variables contributing to model variability, with the careful choice of 

appropriate environmental variables, GAMs and GLMs can potentially be used to 

reduce unexplained variation and improve trend analyses (Forney 2000).   



 

 

 

GLMs are typically used in fisheries management studies for the standardisation of 

trends in catch per unit effort.  In a similar way, GLMs could also be used to account 

for factors such as vessel size and catchability which particularly affect the analysis of 

trends in size-based indicators (Daan et al. 2003, Piet & Jennings 2005). 

4.8 Recommendations for statistical power analysis of candidate indicators  

In addition to Peterman’s (1990) four factors important to statistical power analysis in 

applied scientific work, which are pertinent also for power analysis of candidate 

indicators, we offer a few additional factors also important to power calculations for 

candidate ecosystem indicators.   

4.8.1 One versus two tailed tests to evaluate trends in indicators 

The selection of a two-tailed test when a one-tailed test is more appropriate lowers 

power unnecessarily.  We argue that in most instances where indicators may be 

utilized in offering management advice, a one tailed test is appropriate.  This is 

because most candidate indicators, e.g., those listed in Table 2, have a recognized 

reference direction.  For example, if a statistically detected decline in an indicator 

over some pre-specified time period is to trigger a set of remedial management 

actions, the null hypothesis should thus be of the form that the slope is greater than or 

equal to zero rather than equal to zero.  Obviously statistical power analyses of 

candidate indicators should be devised accordingly. 

 

Trenkel and Rochet (2003) applied one tailed tests for some indicators and two tailed 

tests for others. The rationale for this allocation was not made explicit and in at least 

one instance, the test applied was inconsistent with the reference direction assumed. 

For example, for the intrinsic rate of increase (r) a two tailed test was applied.  Yet, a 

one tailed test might have been more appropriate because a single reference direction 

(i.e., decrease in r) and a single effect size (i.e., r = -0.10) was used in the statistical 

power calculation. 

 

Nicholson and Jennings (2004) applied two-tailed tests for all statistical power 

calculations when according to existing literature (Table 2) all of the indicators 



 

 

investigated have only a single reference direction and a one-tailed test would have 

instead been more appropriate.  Based on using a two-tailed test rather than a one-

tailed test their calculations on statistical power of the candidate indicators 

investigated might have been biased too low.  For example, when attempting to 

replicate their power calculations for the average mean maximum weight of fish in the 

North Sea International Beam Trawl Survey, a two-tailed test for a 10 year decline of 

40 grams per year with alpha set at 0.05 gave power of 0.62 (compared to their result 

of 0.70).  Making it a one tailed test increased power from 0.62 to 0.77. Power was 

also low from using a value for alpha that was perhaps too low.  Increasing alpha to 

0.10 and using a one-tailed test increased power to 0.87.  We thus suggest that when 

there is a single reference direction for an indicator that a one-tailed hypothesis test 

rather than a two-tailed hypothesis test should be carried out. 

4.8.2 Uncertainty in the error variance used in power calculations 

The error variance required as an input to power calculations for environmental 

hypothesis testing is often imprecisely estimated due to low sample size or high 

variability in sample deviations and considerable uncertainty often exists over an 

appropriate model with which to estimate error variance (Pennington 1985).  For 

example, if it is of interest to evaluate the power of a test whether a linear decline in 

some indicator has occurred, the variance in the deviates of such a model must be 

estimated from historic observations.  If the time series of historic observations do not 

conform to a linear decline, then some other non-linear model might be fitted to the 

data to estimate the error deviates that might occur from a linear decline should one 

occur.   

 

Moreover, it has recently emerged that different quality control and screening 

protocols for survey data can lead to extraordinarily different patterns in time series 

for the same indicators.  For example, Nicholson and Jennings (2004) and Piet and 

Jennings (2005) produce time series of the same indicators from the IBT survey 

database.  While showing similar trends, the interannual variability in the time series 

over the same time period is considerably higher in Piet and Jennings (2005) than that 

in the same time series from Nicholson and Jennings (2004).  Clearly, the statistical 

power for the same indicator series to detect the same trend would be considerably 



 

 

lower based upon Piet and Jennings’ (2005) time series.  This highlights the urgent 

need for there to be carefully derived and commonly agreed standardized protocols 

for screening and quality control of survey databases from which indicators are to be 

derived. 

 

If a nonlinear model is to be fitted to a historic time series to estimate error variances, 

then some appropriate nonlinear model must be chosen and there may be considerable 

uncertainty in the form of an appropriate model.  Statistical techniques for dealing 

with model choice would thus need to be considered, e.g., likelihood ratio or F-tests 

for nested models, AIC, or Bayes’ factors (Hiborn and Mangel 1997).  Nicholson and 

Jennings (2004) utilized a simple difference-based variance estimator to estimate the 

error variance (Gasser et al.. 1986) for power calculations that has been found to 

provide a good balance between bias and precision when time series are relatively 

short.  Trenkel and Rochett (2003) in contrast used among other things residual 

variance from fits of models to indicator time series values.  However, the use of a 

single estimate of error variance in power calculations ignores uncertainty in the 

estimate of the error variance and masks the sensitivity of statistical power results to 

alternative plausible values for error variance.  We therefore recommend that in future 

power analyses of indicators that the sensitivity of power to alternative methods of 

computing input variances be shown.   

 

4.8.3 Statistical analysis of sets of non-independent co-varying indicators 

Sets of indicators derived from the same survey may be expected to exhibit the same 

reference direction, and similar patterns in error variability if they happen to be 

analogous measures of some common ecological property such as the mean body size 

of fishes in the ecosystem.  For example, some proposed indicators include mean 

length, mean weight, mean maximum length and mean maximum length and as these 

are all related to body size they might all expected to covary.  Furthermore, as pointed 

out by Trenkel and Rochet (2003), these indicators are not statistically independent 

since they come from the same set of trawl survey hauls from which the indicators are 

derived.  Thus, while it is valid to conduct hypothesis tests (providing that multiple 

tests correction factors are applied) and compute the statistical power separately for 



 

 

each separate indicator, it may be equally valid to include all related indicators from a 

single survey in a single statistical evaluation such as MANOVA or MANCOVA that 

is specifically designed to statistically analyse sets of dependent variables that are not 

statistically independent (see above).  MANOVA and MANCOVA typically yield 

higher power tests than their univariate counterparts when there is covariance in the 

error structure of the dependent variables.  However, the null hypotheses that may be 

tested using MANCOVA in conventional software may not necessarily be the ones of 

interest.  For example, SPSS permits only the null hypothesis that the slope for the 

covariate is not different between the set of dependent variables.  In contrast, it may 

be instead of interest to test the null hypothesis that the mean value for the slope for 

the covariate across all of the indicators in the MANCOVA is greater than or equal to 

zero.  We thus recommend that such multivariate methods of analysis be considered 

for statistically analysing sets of indicators that are non-independent and have been 

found to exhibit positive covariance. 

 

4.8.4 Formulating effect sizes of interest for power calculations for indicators 

Effect size is a key input to statistical power analysis yet there appears to be a lack of 

consistency in the manner in which input values for effect size are derived for 

statistical power calculations.  The effect size for statistical power calculations of 

candidate indicators should reflect the effect size, e.g., decline, in the indicator that is 

of importance in a management decision making context (Peterman 1990).  In some 

instances, power is calculated over a range of values for potential effect sizes (Trenkel 

and Rochet 2003).  In this latter paper, however, criteria were not specified for the 

choice of the particular ranges of effects sizes utilized.  For example, a value of r=-0.1 

was utilized in Trenkel and Rochet (2003) for power calculations but no justification 

for why this effect size was of concern was provided.   

 
In other instances, the effect size used for power calculations is taken to be estimates 

from statistical analysis of historic data (e.g., also in Trenkel and Rochet 2003).  

Nicholson and Jennings (2004) fitted Loess smoothers to the historic candidate 

indicators and estimated the maximum observed historic change in the indicators 

based on the Loess smoothed trend.  This maximum observed historic change was 



 

 

taken to be the maximum effect size for the statistical power analysis of the ability to 

detect future changes in the candidate indicator.  

 
Without also identifying where effort intensification occurred or the periods in which 

fishing effort was considered to be most excessive, it may be the case that maximum 

observed effect sizes in available historic data may come from periods when there 

have been no changes of concern to the ecosystem and thus the observed effect sizes 

would be much smaller than those that could be expected to occur based on 

undesirable fishing induced changes to the ecosystem.  Thus, rather than utilizing only 

observed historic values for possible effect sizes of concern for management decision 

making, it may be more prudent to link these analyses with evaluations of historic 

fishing effort as in Piet and Jennings (2005) and try to identify minimum effect sizes 

that would in principle be of concern based on population dynamics theory or 

ecological theory and possibly population dynamics and ecosystem modelling (Fulton 

et al.. 2005) 

 
If it were known that large increases in fishing effort occurred at some point in the 

time series, this could help to identify possible expected undesirable changes in the 

candidate indicators based on observed changes in the indicators following the fishing 

effort intensification (Piet and Jennings 2005).  Piet and Jennings (2005) analysis that 

attempted to identify responses in candidate indicators to fishing effort variation, 

appeared to use indicator time series with anomalously high variance compared to the 

same ones in Nicholson and Jennings (2004) and possibly because of this may have 

had unduly low power in their tests for such linkages.   

 

4.8.5 Are linear models always the most appropriate choice for trend analysis? 

When it is of interest to do statistical power calculations for the detection of time 

trends in an indicator, it may be more appropriate to consider an exponential model 

rather than a simple linear model.  Many evaluations of abundance and ecosystem 

indicators presume a simple linear model and base statistical power calculations on 

the linear model (de la Mare 1984; Nicholson and Jennings 2004).  Such power 

analyses also evaluate the sensitivity of power to the length of a linear trend and in 



 

 

some instances attempt to the number of years it would take to obtain sufficiently high 

power.  The use of a linear model in such instances may be inappropriate because it 

ignores the fact that there may be practical limits to the extent of decline possible in 

the characteristic measured by the indicator (e.g., the mean body size of adult fish).  A 

linear model may also be conceptually inappropriate since it implies that should the 

assumed trend continue for long enough, then the value for the indicator could take on 

a negative value.  Exponential decline models may provide an appropriate alternative 

because they model a constant proportional decline per year and do not allow the 

modelled variable to drop below zero.  The “effects” to evaluate in exponential 

models are also easier to interpret than the annual total rates of decline in linear 

models since in exponential models it is possible to evaluate given percentage annual 

rates of decline (Link 2005). 

 

4.8.6 Utilizing indicators directly vs. fitted time series model values for advice 

It has been suggested that for management purposes it may be of interest to detect 

changes in the values of indicators over relatively short time periods, e.g., 3-5 years.  

Nicholson and Jennings (2004) suggested that when a linear model is assumed, the 

statistical power to detect changes over such short time periods was unacceptably low 

and that most indicators available should not be used to try to detect changes in 

indicators over such short time periods.  However, if it is still critical to be able to 

respond to apparent declines in indicators in the absence of other information on 

ecosystem state, it may be acceptable to apply time series model-based estimated 

declines in indicators to provide management advice (Pennington 1985; 1986).  

Management advice could thus be based on declines in the model predicted values for 

the indicator where some time series model has been fitted to the available data and a 

statistically rigorous model selection process has been undertaken to identify the most 

appropriate time series model.  This is analogous to stock assessment where the 

decision rules adopted are model-based rather than model-free (McAllister et al. 

1999).  Where there is a set of related indicators that could a priori be expected to 

exhibit similar patterns in temporal variability in response to fishing and other 

environmental perturbations, it may be appropriate to undertake the model selection 

process with a single form of a time series model being chosen for the set of related 

indicators, rather than a separate form of model being selected for each of the related 



 

 

indicators.  Decision rules could be formulated on joint observed changes in the 

modelled indicators, taking into account the reference direction for each particular 

indicator (Fulton et al. 2005). 

 

5 CONCLUSIONS 

Many studies have shown that size-based metrics are generally consistent indicators 

for the detection of fishing impacts on marine communities.  The paucity of defined 

reference points for these indicators has resulted in a situation whereby the only 

viable approach for assessing the relative impact of fishing on an indicator is by the 

monitoring of trends in indicators over a period of time. 

The power of many indicator monitoring programs has been shown by a number of 

published studies to be too low for effective management, however there are a number 

of alternatives available for improving power.  Researchers within the INDECO 

project and beyond should consider 

 

1. The relative costs of Type I and Type II errors and set a level of α accordingly 

and not accepting with out question the standard value for alpha of 0.05. 

2. Using multivariate statistical methods such as MANCOVA to analyse the 

covariance among dependent variables in the error deviations from model 

predictions for a set of indicators. 

3. Reversing the burden of proof.  

4. Choosing 1-tailed rather than 2-tailed tests when there is an appropriate 

reference direction. 

5. Evaluating a variety of approaches to computing error variance. 

6. Applying both empirical methods that link indicators with historic fishing 

effort (Piet and Jennings 2005) and theoretical Population Dynamic Models 

and Ecological Modelling approaches (e.g., Fulton et al.. 2005) to identifying 

the effect sizes on percentage changes in the indicator that would be of interest 

to detect. 



 

 

7. Applying agreed and carefully formulated standardized protocols with which 

to prepare survey data to construct candidate fishery indicators. 

8. A time series longer than just 3 years in attempts to statistically detect trends 

in a set of indicators for use in fisheries management. 

9. Using exponential models rather than linear models when evaluating the 

statistical power to detect annual changes in indicators. 

10. Using time series modelling approaches to estimate trends in sets of analogous 

indicators and base decision rules on the modelled trend rather than the 

observed values.   

 

These alternative approaches have the potential to make indicator trend analysis a 

more powerful tool for the detection of fishing impacts on marine communities. 
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